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Glycosylation is one of the most important and common
forms of protein post-translational modification that is
involved in many physiological functions and biological
pathways. Altered glycosylation has been associated with
a variety of diseases, including cancer, inflammatory and
degenerative diseases. Glycoproteins are becoming im-
portant targets for the development of biomarkers for
disease diagnosis, prognosis, and therapeutic response
to drugs. The emerging technology of glycoproteomics,
which focuses on glycoproteome analysis, is increasingly
becoming an important tool for biomarker discovery. An
in-depth, comprehensive identification of aberrant glyco-
proteins, and further, quantitative detection of specific
glycosylation abnormalities in a complex environment re-
quire a concerted approach drawing from a variety of
techniques. This report provides an overview of the recent
advances in mass spectrometry based glycoproteomic
methods and technology, in the context of biomarker dis-
covery and clinical application. Molecular & Cellular
Proteomics 10: 10.1074/mcp.R110.003251, 1–14, 2011.

With recent advances in proteomics, analytical and com-
putational technologies, glycoproteomics—the global analy-
sis of glycoproteins—is rapidly emerging as a subfield of
proteomics with high biological and clinical relevance. Glyco-
proteomics integrates glycoprotein enrichment and proteo-
mics technologies to support the systematic identification and
quantification of glycoproteins in a complex sample. The re-
cent development of these techniques has stimulated great
interest in applying the technology in clinical translational
studies, in particular, protein biomarker research.

While glycomics is the study of glycome (repertoire of gly-
cans), glycoproteomics focuses on studying the profile of
glycosylated proteins, i.e. the glycoproteome, in a biological
system. Considerable work has been done to characterize the
sequences and primary structure of the glycan moieties at-
tached to proteins (1–3), and their structural alterations related

to cancer (4–6). Recent reports have provided a comprehen-
sive overview of the concept of glycomics and its prospective
in biomarker research (7–10). In contrast, this review is fo-
cused on recent developments in glycoproteomic techniques
and their unique application and technical challenge to bio-
marker discovery.

Glycoproteomics in Biomarker Discovery and Clinical
Study—Most secretory and membrane-bound proteins pro-
duced by mammalian cells contain covalently linked glycans
with diverse structures (2). The glycosylation form of a glyco-
protein is highly specific at each glycosylation site and gen-
erally stable for a given cell type and physiological state.
However, the glycosylation form of a protein can be altered
significantly because of changes in cellular pathways and
processes resulting from diseases, such as cancer, inflamma-
tion, and neurodegeneration. Such disease-associated alter-
ations in glycoproteins can happen in one or both of two
ways: 1) protein glycosylation sites are either hypo, hyper, or
newly glycosylated and/or; 2) the glycosylation form of the
attached carbohydrate moiety is altered. In fact, altered gly-
cosylation patterns have long been recognized as hallmarks in
cancer progression, in which tumor-specific glycoproteins are
actively involved in neoplastic progression and metastasis (5,
6, 11, 12). Sensitive detection of such disease-associated
glycosylation changes and abnormalities can provide a
unique avenue to develop glycoprotein biomarkers for diag-
nosis and prognosis. In addition, intervention in the glycosyl-
ation and carbohydrate-dependent cellular pathways repre-
sent a potential new modality for cancer therapies (6, 11, 13).
Table I lists some of the FDA approved cancer biomarkers (14,
15) that are glycosylated proteins or protein complexes.

Protein biomarker development is a complex and challeng-
ing task. The criteria and approach applied for developing
each individual biomarker can vary, depending on the pur-
pose of the biomarker and the performance requirement for
its clinical application (16, 17). In general, it has been sug-
gested that the preclinical exploratory phase of protein bio-
marker development can be technically defined into four
stages (18), including initial discovery of differential proteins;
testing and selection of qualified candidates; verification of a
subset of candidates; assay development and pre-clinical
validation of potential biomarkers. Thanks to recent techno-
logical advances, mass spectrometry based glycoproteomics
is now playing a major role in the initial phase of discovering
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aberrant glycoproteins associated with a disease. Glycopro-
tein enrichment techniques, coupled with multidimensional
chromatographic separation and high-resolution mass spec-
trometry have greatly enhanced the analytical dynamic range
and limit of detection for glycoprotein profiling in complex
samples such as plasma, serum, other bodily fluids, or tissue.
In addition, candidate-based quantitative glycoproteomics
platforms have been introduced recently, allowing targeted
detection of glycoprotein candidates in complex samples in a
multiplexed fashion, providing a complementary tool for gly-
coprotein biomarker verification in addition to antibody based
approaches. It is clear that glycoproteomics is gaining mo-
mentum in biomarker research.

Glycoproteomics Approaches—Glycoproteomic analysis is
complicated not only by the variety of carbohydrates, but also
by the complex linkage of the glycan to the protein. Glycosyl-
ation can occur at several different amino acid residues in the
protein sequence. The most common and widely studied
forms are N-linked and O-linked glycosylation. O-linked gly-
cans are linked to the hydroxyl group on serine or threonine
residues. N-linked glycans are attached to the amide group of
asparagine residues in a consensus Asn-X-Ser/Thr sequence
(X can be any amino acid except proline) (19). Other known,
but less well studied forms of glycosylation include glyco-
sylphosphatidylinositol anchors attached to protein carboxyl
terminus, C-glycosylation that occurs on tryptophan residues
(20), and S-linked glycosylation through a sulfur atom on
cysteine or methionine (21, 22). Our following discussion is
focused on glycoproteomic analysis of the most common
N-linked and O-linked glycoproteins.

A comprehensive analysis of glycoproteins in a complex bi-
ological sample requires a concerted approach. Although the

specific methods for sample preparation can be different for
different types of samples (e.g. plasma, serum, tissue, and cell
lysate), a glycoproteomics pipeline typically consists of glyco-
protein or glycopeptide enrichment, multidimensional protein or
peptide separation, tandem mass spectrometric analysis, and
bioinformatic data interpretation. For glycoprotein-based en-
richment methods, proteolytic digestion can be performed be-
fore or after glycan cleavage, depending on the specific work-
flow and enrichment methods used. For glycopeptide
enrichment, proteolytic digestion is typically performed before
the isolation step so that glycopeptides, instead of glycopro-
teins, can be captured. For quantitative glycoproteomics profil-
ing, additional steps, such as differential stable isotope labeling
of the sample and controls, are required. Fig. 1 illustrates the
general strategy for an integrated glycoproteomics analysis.

Glycoproteins or glycopeptides can be effectively enriched
using a variety of techniques (see below). Following the en-
richment step, the workflow then splits into two directions:
glycan analysis and glycoprotein analysis. The strategies for
glycan analysis have been discussed in several reviews and
will not be covered in this report. For glycoprotein analysis,
bottom-up workflows (“shotgun proteomics”—peptide based
proteomics analysis) (23) are still most common, providing not
only detailed information of a glycoprotein profile, but also the
specific mapping of glycosylation sites. It is notable that the
reliable analysis of mass spectrometric data in glycopro-
teomic studies largely relies on bioinformatic tools and glyco-
related databases that are available. An increasing number of
algorithms and databases for glycan analysis have been de-
veloped and well documented in several recent reviews (24–
26). For glycoprotein and glycopeptide sequence analysis, a
large number of well-characterized and annotated glycopro-

TABLE I

Listing of some of the US Food and Drug Administration (FDA) approved cancer biomarkers

Protein target Glycosylation Detection Source Disease Clinical biomarker

�-Fetoprotein Yes Glycoprotein Serum Nonseminomatous
testicular cancer

Diagnosis

Human chorionic gonadotropin-� Yes Glycoprotein Serum Testicular cancer Diagnosis
CA19–9 Yes Carbohydrate Serum Pancreatic cancer Monitoring
CA125 Yes Glycoprotein Serum Ovarian cancer Monitoring
CEA (carcinoembryonic antigen) Yes Protein Serum Colon cancer Monitoring
Epidermal growth factor receptor Yes Protein Tissue Colon cancer Therapy selection
KIT Yes Protein (IHC) Tissue Gastrointestinal (GIST)

cancer
Diagnosis/Therapy selection

Thyroglobulin Yes Protein Serum Thyroid cancer Monitoring
PSA-prostate-specific antigen

(Kallikrein 3)
Yes Protein Serum Prostate cancer Screening/Monitoring/Diagnosis

CA15–3 Yes Glycoprotein Serum Breast cancer Monitoring
CA27–29 Yes Glycoprotein Serum Breast cancer Monitoring
HER2/NEU Yes Protein (IHC), Protein Tissue,

Serum
Breast cancer Prognosis/Therapy selection/

Monitoring

Fibrin/FDP-fibrin degradation protein Yes Protein Urine Bladder cancer Monitoring

BTA-bladder tumour-associated
antigen (Complement factor H related
protein)

Yes Protein Urine Bladder cancer Monitoring

CEA and mucin (high molecular
weight)

Yes Protein
(Immunofluorescence)

Urine Bladder cancer Monitoring
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teins can be found in the UniProt Knowledgebase. In addition,
many glycopeptide mass spectra are now available in the
continually expanding PeptideAtlas library (27), which stores
millions of high-resolution peptide fragment ion mass spectra
acquired from a variety of biological and clinical samples for
peptide and protein identification. Ultimately, all the data ob-
tained from different aspects of the workflow need to be merged
and interpreted in an integrated fashion so that the full extent of
glycosylation changes associated with a particular biological
state can be better revealed. To the best of our knowledge, the
complete glycoform analysis of any glycoprotein in a specific
cell type under any specific condition has not yet been accom-
plished for any glycoprotein with multiple glycosylation sites.
Current technology can define the glycan compliment and pro-
file the glycoproteins, but is not capable of putting them to-
gether to define the molecular species present. To date, such
integrated studies still remain highly challenging, even with ad-
vanced tandem mass spectrometry technologies and growing
bioinformatic resources (26, 28–31).

Enrichment of the Glycoproteome—Characterization of the
glycoproteome in a complex biological sample such as
plasma, serum, or tissue, is analytically challenging because
of the enormous complexity of protein and glycan constitu-
ents and the vast dynamic range of protein concentration in
the sample. The selective enrichment of the glycoproteome is
one of the most efficient ways to simplify the enormous com-
plexity of a biological sample to achieve an in-depth glyco-
protein analysis. Two approaches for glycoprotein enrichment
have been widely applied: lectin affinity based enrichment

methods (31–36) and hydrazide chemistry-based solid phase
extraction methods (37–42). Recent studies have demon-
strated that the two methods are complementary and a very
effective means for the enrichment of glycoproteins or glyco-
peptides from human plasma and other bodily fluids (38, 39,
43). In addition, glycoprotein and glycopeptide enrichment
using boronic acid (44, 45), size-exclusion chromatography
(46), hydrophilic interaction (47) and a graphite powder micro-
column (48) have been reported.

Lectin affinity enrichment is based on the specific binding
interaction between a lectin and a distinct glycan structure
attached on a glycoprotein (49, 50). There are a variety of
lectin species that can selectively bind to different oligosac-
charide epitopes. For instance, concanavalin A (ConA) binds
to mannosyl and glucosyl residues of glycoproteins (51);
wheat germ agglutinin (WGA) binds to N-acetyl-glucosamine
and sialic acid (52); and jacalin (JAC) specifically recognizes
galactosyl (�-1,3) N acetylgalactosamine and O-linked glyco-
proteins (53). Lectin affinity enrichment has been designed to
enrich glycoproteins with specific glycan attachment from
plasma, serum, tissue, and other biological samples through
affinity chromatography and other methods. Multiple lectin
species can also be combined to isolate multiple types of
glycoproteins in complex biological samples (54–59). Con-
canavalin A and wheat germ agglutinin, as well as jacalin are
often used together to achieve a more extensive glycpro-
teome characterization (31, 34, 57, 59, 60). Several reports
have demonstrated a multilectin column approach to achieve
a global enrichment of glycoproteins with various glycan at-

FIG. 1. The strategies of mass
spectrometry based glycoproteomic
analysis.
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tachments from serum and plasma (31, 34, 59, 61, 62). A
recent study has developed a “filter aided sample preparation
(FASP)” based method, which allows highly efficient enrich-
ment of glycopeptides using multi-lectins (63). To date, most
of the work using lectin affinity for targeted glycoprotein en-
richment has focused on N-glycosylation because the binding
specificity of lectin for O-glycosylation is less satisfactory. To
overcome such caveat, efforts have been made using serial
lectin columns of concanavalin A and jacelin in tandem to
isolate O-glycopeptides from human serum (35).

A hydrazide chemistry-based method has been applied to
isolate glycoproteins and glycopeptides through the forma-
tion of covalent bonding between the glycans and the hydra-
zide groups (37). The carbohydrates on glycoproteins are first
oxidized to form aldehyde groups, which sequentially react
with hydrazide groups that are immobilized on a solid surface.
The chemical reaction conjugates the glycoproteins to the
solid phase by forming the covalent hydrazone bond. Al-
though, conceptually, the majority of the glycoproteins in a
biological sample can be captured using this method, the
further analysis of the captured glycoproteins is practically
limited by the method that can cleave glycoproteins or glyco-
peptides from the solid phase. Because there is a lack of
efficient enzymes or chemicals that can specifically deglyco-
sylate and/or release O-linked glycoproteins or glycopeptides
from the solid phase, most of the studies have applied this
method solely for N-linked glycoprotein analysis. PNGase F is
the enzyme that can specifically release an N-glycosylated
proteins or peptides (except those carrying �133 linked core
fucose (38)) from its corresponding oligosaccharide groups.
The hydrazide chemistry method is not only highly efficient in
enriching N-linked glycoproteins or glycopeptides from a
complex environment, but also allows great flexibility in its
applications, such as capturing extracellular N-glycoproteins
on live cells to monitor their abundant changes because of cell
activation, differentiation, or other cellular activities (64). This
method can be readily automated for analyzing a large quan-
tity of samples.

Recent studies have compared glycoprotein isolation meth-
ods. One study assessed lectin-based protocols and hydro-
philic interaction chromatography for their performance in
enriching glycoproteins and glycopeptides from serum (65).
Other studies compared lectin affinity and hydrazide chemis-
try methods for their efficiency in isolating glycoproteins and
glycopeptides from a complex biological sample (39, 66, 67).
The methods are complementary in enriching glycoproteins
because of their different mechanisms of glycoprotein cap-
turing. When both methods were applied, it significantly im-
proves the coverage of the glycoproteome, resulting in an
increased number of glycoproteins identified. The lectin affin-
ity method can be tailored to target glycoproteins with spe-
cific glycan structure(s) for isolation using different lectins,
thus, affording flexibility for its application in glycoproteomic
studies. The application of hydrazide chemistry method has

been widely used for N-linked glycosylation study. The hydra-
zide chemistry essentially reacts with all the proteins with
carbonyl groups, which may include glycoproteins with oxi-
dized glycans (37, 40) and other oxidized proteins that carry
carbonyl groups (68–70). The high specificity of this method
may mainly result from the specificity of PNGase F, the en-
zyme cleaving N-glycosidic bonds to release N-glycoproteins
and peptides from the solid phase. This method affords high
efficiency and specificity in enriching N-linked glycoproteins
or glycopeptides from a complex sample, and can be easily
incorporated into a proteomics workflow for integrated anal-
ysis. In addition to the lectin and hydrazide chemistry-based
methods, it has been suggested that boronic acid-based solid
phase extraction may also be useful for an overall glycopro-
teome enrichment (44, 45), on the basis of the evidence that
boronic acid can form diester bonds with most glycans, in-
cluding both N-linked and O-linked glycosylation (71).

Mass Spectrometric Analysis of Glycoproteome—Mass
spectrometry, because of its high sensitivity and selectivity,
has been one of the most versatile and powerful tools in
glycoprotein analysis, to identify the glycoproteins, evaluate
glycosylation sites, and elucidate the oligosaccharide struc-
tures (56, 72, 73). The utility of a top-down approach (intact
protein based proteomics analysis) (74) for glycoprotein char-
acterization in a complex sample is still technically challeng-
ing with the current technology. The most versatile and widely
used current glycoproteomics methods are based on charac-
terizing glycopeptides generated by the digestion of glyco-
proteins, analyzing either deglycosylated glycopeptides or
intact glycopeptides with glycan attachment, as illustrated in
Fig. 1.

The direct analysis of intact glycopeptides with carbohy-
drate attachments is complicated by the mixed information
obtained from the fragment ion spectra, which may include
fragment ions from the peptide backbone, the carbohydrate
group and the combinations of both. Although it is technically
challenging to comprehensively analyze intact glycopeptides
in a global scale for a complex biological sample, comple-
mentary information regarding peptide backbone and glycan
structure can likely be obtained in a single measurement.
Early work using collision-induced dissociation (CID)1 has
identified a few key features that are characteristics of the
fragmentation of glycopeptides, providing the basis for in-
tact glycopeptide identification (75–79). The analysis of in-
tact glycopeptides has been carried out using a variety of
different instruments, including electrospray ionization
(EST)-based ion trap (IT) (80–84), quadrupole ion trap (QIT)
(85–87), Fourier transform ion cyclotron resonance (FTICR)
(31, 57, 88, 89), ion trap/time-of-flight (IT/TOF) (90, 91), and
quadrupole/time-of-flight (Q/TOF) (92–97); matrix-assisted
laser desorption/ionization (MALDI) based Q/TOF (98–100),

1 The abbreviations used are: CID, collision-induced dissociation;
Q, quadrupole.
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quadrupole ion trap/time-of-flight (QIT/TOF) (86, 101, 102),
and tandem time-of-flight (TOF/TOF) (81, 82, 101, 103–105)
mass spectrometers. In general, the CID generated MS/MS
spectrum of a glycopeptide is dominated by B- and Y-type
glycosidic cleavage ions (carbohydrate fragments) (106),
and b- and y-type peptide fragments from the peptide back-
bone. However, the MS/MS fragmentation data obtained
from different instruments can have pronounced difference
in providing structure information on glycan and peptide
backbone, depending on the experimental setting and in-
strumentation used for mass analysis, including ionization
methods, collision techniques and mass analyzers. Low
energy CID with electrospray ionization-based ion trap,
Fourier transform-ion cyclotron resonance, and Q/TOF in-
strument predominantly generates fragments of glycosidic
bonds. The increase of collision energy using Fourier trans-
form-ion cyclotron resonance, and Q/TOF instruments re-
sult in the more efficient fragmentation of b- and y- ions
from the peptide backbone. MALDI ionization generates
predominantly singly charged precursor ions, which are
more stable and usually fragmented using higher energies
via CID or post-source decay (PSD), generating fragments
from both the peptide backbone and the glycan (98–100,
103, 107–110). Although Q/TOF instruments have been
widely used for intact glycopeptide characterization, one
unique feature of the ion trap instrument is that it allows
repeated ion isolation/CID fragmentation cycles, which can
provide a wealth of complementary information to interpret
the structure of a glycan moiety and peptide backbone (56,
86, 111). Recently, fragmentation techniques using different
mechanisms from CID have been introduced and applied for
glycopeptide analysis, including infrared multiphoton disso-
ciation (IRMPD) (112–115), electon-capture dissociation
(ECD) (112–120) and electron-transfer disassociation (ETD)
(85, 121–123). The application of infrared multiphoton dis-
sociation and electon-capture dissociation is largely per-
formed with Fourier transform-ion cyclotron resonance in-
struments. Complementary to CID fragmentation, electon-
capture dissociation and electron-transfer disassociation
tend to cleave the peptide backbone with no loss of the
glycan moiety, providing specific information on localizing
the glycosidic modification. More details regarding mass
spectrometric analysis of intact glycopeptides can be found
in recent reviews (56, 124). Although great efforts have been
made to apply a variety of mass spectrometry techniques to
study both N-linked (32, 56, 86, 87, 112–114, 125–130) and
O-linked (90, 116, 119, 120, 130–140) glycopeptides, the
interpretation of the fragment spectrum of an intact glycopep-
tide still requires intensive manual assignment and evaluation. A
recent study has demonstrated the feasibility to develop an
automated workflow for analyzing intact glycopeptides in mix-
tures (141). In general, however, a high throughput, large scale
profiling of intact glycopeptides in a complex sample still re-
mains a challenge with current technology.

The analysis of deglycosylated peptides requires the re-
moval of glycan attachments from glycopeptides. Fortunately,
for N-linked glycopeptides, the N-glycosidic bond can be
specifically cleaved using the enzyme PNGase F, providing
deglycosylated peptides, which can then be analyzed directly
using shotgun proteomics. The PNGase F-catalyzed deglyco-
sylation results in the conversion of asparagine to aspartic
acid in the glycopeptide sequence, which introduces a mass
difference of 0.9840 Da. Such distinct mass differences can
be used to precisely map the N-linked glycosylation sites
using high resolution mass spectrometers. Stable isotope
labeling introduced by enzymatic cleavage of glycans in
H2

18O has also been used to enhance the precise identifica-
tion of N-glycosylation sites (33, 142, 143). The removal of
O-linked glycans is less straightforward, most assays rely on
chemical deglycosylation methods, such as trifluorometh-
ansulfonic acid (144), hydrazinolysis (145), �-elimination (146),
and periodate oxidation (35, 147). The application of these
methods suffers from a variety of limitations, such as low
specificity for O-linked glycosylation, degradation of the pep-
tide backbone, and modifications of the amino acid resi-
dues—all of which can complicate or compromise O-linked
glycoproteomics analysis in a complex sample. Most of the
large scale glycoproteomics studies using the deglycosylation
approach have been focused on N-glycoproteins, which are
prevalent in blood and a rich source for biomarker discovery.
O-glycosylation lacks a common core, consensus sequence,
and universal enzyme that can specifically remove the glycans
from the peptide backbone, thus, is more challenging to an-
alyze for large scale profiling.

Following deglycosylation, the glycopeptides can be
treated and analyzed as stripped peptides using a shotgun
proteomics pipeline. MS/MS fragment spectra with b-ions
and y-ions generated from CID are searched against protein
databases using search algorithms, such as SEQUEST (148),
MASCOT (149), and X!tandem (150), and subsequently vali-
dated via statistical analysis (151–154), to provide peptide and
protein identifications with known false discovery rate. The
N-glycosylation sites can be precisely mapped using the con-
sensus sequence of Asn-X-Ser/Thr, in which asparagine is
converted to aspartic acid following enzyme cleavage intro-
ducing a mass difference of 0.9840 Dalton. A variety of mass
spectrometers have been used to analyze glycoproteins, in
particular N-linked glycoproteins, in complex biological and
clinical samples using the deglycosylation approach. These
studies include electrospray ionization-based ion trap (37–39,
41, 67, 155–157), Orbitrap (158), Q/TOF (33, 35, 142, 155),
triple quadrupole (159), Fourier transform-ion cyclotron reso-
nance (64, 160); and MALDI based TOF/TOF (41, 161) and
Q/TOF (37). Recently, an attempt was made to apply ion
mobility-mass spectrometry (IM-MS) to characterize deglyco-
sylated glycopeptides and the corresponding carbohydrates
simultaneously (162) in a single measurement. The approach
of analyzing deglycosylated glycopeptides makes it possible
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to utilize available proteomics technology for large-scale gly-
coproteome profiling, especially N-linked glycoproteins, in a
high-throughput fashion.

Glycoproteomics Analysis in Blood and Other Bodily Flu-
ids—An important target for blood-based diagnostic assays
involves the detection and quantification of glycosylated pro-
teins. Glycosylated proteins, especially N-linked glycopro-
teins, are ubiquitous among the proteins destined for extra-
cellular environments (163), such as plasma or serum. A
systematic and in-depth global profiling of the blood glyco-
proteome can provide fundamental knowledge for blood bio-
marker development, and is now possible with the develop-
ment of glycoproteomics technologies. In the past few years,
several large scale proteomics studies on profiling the glyco-
proteome of human plasma and serum have been reported
(34, 35, 37, 38, 43, 61, 65, 164–166), adding significant num-
bers of glycoproteins into the blood glycoproteome database.
In one study (38), immunoaffinity subtraction and hydrazide
chemistry were applied to enrich N-glycoproteins from human
plasma. The captured plasma glycoproteins were subjected
to two-dimensional liquid chromatography separation fol-
lowed by tandem mass spectrometric analysis. A total of 2053
different N-glycopeptides were identified, covering 303 non-
redundant glycoproteins, including many glycoproteins with
low abundance in blood (38). In a different study, hydrazide
chemistry-based solid phase extraction method was ap-
plied to enhance the detection of tissue-derived proteins in
human plasma (167). Other studies have applied lectin af-
finity-based approaches to characterize the serum and
plasma glycoproteome (34, 43, 166). These studies provide
detailed identification regarding the individual N-glycosyla-
tion sites using high-resolution mass spectrometry. The
efforts made in global profiling of glycoproteins in plasma
and serum have not only greatly enhanced our understand-
ing of the blood glycoproteome, but also have facilitated the
development of new technologies that can be used for
glycoprotein biomarker discovery. A variety of experimental
designs and strategies for blood glycoprotein profiling have
been applied for clinical disease studies, including prostate
cancer (168), hepatocellular carcinoma (164, 168–170), lung
adenocarcinoma (61, 171), breast cancer (58, 165, 172),
atopic dermatitis (169), ovarian cancer (173, 174), congen-
ital disorders of glycosylation (175), and pancreatic cancer
(156, 176). Most of these studies focused on the early
stages of glycoprotein biomarker discovery and many of
them exploited multilectin affinity techniques to isolate gly-
coproteins from serum or plasma.

Glycoproteomics techniques have also been applied to
study the glycoproteome of other bodily fluids. The comple-
mentary application of hydrazide chemistry-based solid
phase extraction and lectin affinity method have led to the
identification of 216 glycoproteins in human cerebrospinal
fluid (CSF), including many low abundant ones (39). A hydra-
zide chemistry based study on human saliva has character-

ized 84 N-glycosylated peptides in 45 glycoproteins (177).
The study on tear fluid identified 43 N-linked glycoproteins,
including 19 proteins that have not been discovered in tear
fluid previously (178). Other glycoproteomics studies on bod-
ily fluids include N-glycoprotein profiling of lung adenocarci-
noma pleural effusions (179), urine glycoprotein profiling
(180), and urine glycoprotein signature identification for blad-
der cancer (181). In the urine glycoprotein profiling study, 150
annotated glycoproteins in addition to 43 predicted glycopro-
teins were identified (180). In our own study, 48 glycoproteins
have so far been identified in pancreatic juice (unpublished
data), adding complementary information to the pancreatic
juice protein database (182–184).

Glycoproteomics Analysis of Tissue and Cell Lysates—Pro-
tein glycosylation has been increasingly recognized as one of
the prominent alterations involved in tumorigenesis, inflam-
mation, and other disease states. The study of glycoproteins
in cell and tissue carries great promise for defining biomarkers
for diagnotic and therapeutic targets. The glycoproteomics
studies in liver tissue (185, 186) and cell lines (187) have
provided a fundamental understanding of the liver glycopro-
teome and identified protein candidates that are associated
with highly metastatic liver cancer cells. In one of the studies,
hydrazide chemistry and multiple enzyme digestion provided
a complementary identification of 939 N-glycosylation sites
covering 523 nonredundant glycoproteins in human liver
tissue (185). Studies on ovarian cancer have focused on dis-
covering putative glycoprotein biomarkers for improving di-
agnosis (173, 174) and therapeutic treatment (188). Glyco-
proteomics studies have also been carried out to study
hepatocelluar carcinoma. Magnetic nanoparticle immobilized
Concanavalin A was used to selectively enrich N-glycopro-
teins in a hepatocelluar carcinoma cell line leading to the
identification of 184 glycosylation sites corresponding to 101
glycoproteins (189). In a different study, complementary
methods of hydrophilic affinity and hydrazide chemistry were
applied to investigate the secreted glycoproteins from a
hepatocelluar carcinoma cell line, in which 300 different gly-
cosylation sites within 194 glycoproteins were identified (190).
While many of these studies focused on N-glycoproteins,
mucin-type O-linked glycoproteins are the predominant forms
of O-linked glycosylation and are difficult to analyze. A met-
abolic labeling method was developed to facilitate their iden-
tification in complex cell lysates using proteomic strategies
(191).

Cell surface and membrane proteins are particularly ap-
pealing for biomarker discovery, and many of them are gly-
cosylated proteins. Both hydrazide chemistry- and lectin af-
finity-based approaches have been applied to specifically
study cell surface and membrane N-glycoproteins that are
associated with diseases, including colon carcinoma (192),
breast cancer (158), and thyroid cancer (157). One study
applied hydrazide chemistry to covalently label extracellular
glycan moieties on live cells, providing highly specific and
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selective identification of cell surface N-glycoproteins (64). A
complementary application of hydrazide chemistry and lectin
affinity methods was demonstrated to profile cell membrane
glycoproteins, significantly enhancing the glycoprotein iden-
tification (67).

Quantitative Glycoprotein Profiling—One of the major goals
of clinical proteomics is to effectively identify dysregulated
proteins that are specifically associated with a biological
state, such as a disease. In the past decade, different quan-
titative proteomics techniques have been introduced and ap-
plied to study a wide variety of disease settings. These tech-
niques are based on different mechanisms to facilitate mass
spectrometric-based quantitative analysis, including stable
isotopic or isobaric labeling using chemical reactions (e.g.
ICAT and iTRAQ) (193–195), metabolic incorporation (e.g.
SILAC) (196) and enzymatic reactions (e.g. 18O labeling) (197,
198); as well as less quantitatively accurate label-free ap-
proaches (199, 200). The overview and comparison of these
quantitative techniques can be found in several reports in the
literature and are not discussed in this review. Most of these
isotopic labeling techniques can be adapted and utilized for
glycoproteomics analysis to quantitatively compare the gly-
coproteome of a diseased sample to a control, thus revealing
the glycosylation occupancy of individual glycosylation sites
that may be involved in a disease. In addition to the well-
established labeling methods cited above, several more ex-
perimental labeling strategies have been described in the field
of glycoproteomics. One study demonstrated the feasibility of
using stable isotope labeled succinic anhydride for quantita-
tive analysis of glycoproteins isolated from serum via hydra-
zide chemistry (37). In a different report, the heavy and light
version of N-acetoxy-succinimide combining with lectin affin-
ity selection was used to quantitatively profile serum glyco-
peptides in canine lymphoma and transitional cell carcinoma
(201). Stable isotope labeled 2-nitrobenzenesulfenyl was also
used for chemical labeling in a quantitative glycoprotein pro-
filing study on the sera from patients with lung adenocarci-
noma (202). O-Linked N-acetylglucosamine (O-GlcNAc) is an
intracellular, reversible form of glycosylation that shares many
features with phosphorylation (203). Studies have suggested
that O-GlcNAc may play an important role in many biological
processes (204). A quantitative study on O-GlcNAc glycosyl-
ation has been reported, in which a method termed quantita-
tive isotopic and chemoenzymatic tagging (QUIC-Tag) was
described using a biotin-avidin affinity strategy for O-GlcNAc
glycopeptide enrichment and stable isotope-labeled formal-
dehyde for mass spectrometric quantification (205). Recently,
the isobaric tag for relative and absolute quantitation (iTRAQ)
technique, combined with different glycoprotein enrichment
approaches, has been utilized in several quantitative glyco-
proteomics studies. In the study of hepatocellular carcinoma,
N-linked glycoproteins were enriched from hepatocellular car-
cinoma patients and controls using multilectin column and
then quantitatively compared using iTRAQ to reveal the dif-

ferential proteins associated with hepatocellular carcinoma
(206). In a different study, the approach of using narrow
selectivity lectin affinity chromatography followed by iTRAQ
labeling was demonstrated to selectively identify differential
glycoproteins in plasma samples from breast cancer patients
(165). Another study utilized hydrazide chemistry-based solid
phase extraction and iTRAQ to investigate the tear fluid of
patients with climatic droplet keratopathy in comparison of
normal controls, identifying multiple N-glycosylation sites with
differential occupancy associated with climatic droplet kera-
topathy (178).

In addition to using chemical reactions to incorporate stable
isotope tag for quantitative mass spectrometric analysis, 18O
can be introduced into N-glycopeptides during enzymatic
reactions, such as tryptic digestion (incorporation of two 18O
into the peptide carboxyl-terminal) and PNGase F mediated
hydrolysis (incorporation of one 18O into the asparagine of
N-glycosylation sites (33)). Attempts have been made to apply
this approach to identify differentially expressed N-glycosyla-
tion associated with ovarian cancer in serum (207). In a dif-
ferent approach, the SILAC technique allows incorporation of
stable isotope-labeled amino acids into proteins during cell
culturing process (196), and was applied to investigate the
difference in cell surface N-glycoproteins among different cell
types (64). A label-free approach has also been used for
glycoproteomics profiling, including a method developed to
profile intact glycopeptides in a complex sample (208) and a
study that compares the plasma glycoproteome between
psoriasis patients and healthy controls (209).

Targeted Glycoproteomics Analysis—Mass spectrometry
based targeted proteomics has recently emerged as a multi-
plexed quantitative technique that affords highly specific and
candidate-based detection of targeted peptides and proteins
in a complex biological sample (18, 210–214). The technique
is based on the concept of stable isotope dilution utilizing
stable isotope-labeled synthetic reference peptides, which
precisely mimic their endogenous counterparts, to achieve
targeted quantification (214). Such techniques can be applied
to target specific glycoproteins or glycopeptides, to precisely
quantify the status of candidate glycosylation sites and as-
sess the glycosylation occupancy at the molecular level. How-
ever, it is technically impractical to use synthetic peptides to
precisely mimic a large number of natural glycopeptides with
intact a glycan moiety as internal standards because of the
structure complexity and variation of the sugar chain. To
overcome these technical obstacles, an alternative approach
was proposed for targeted analysis of N-glycosylation occu-
pancy, in which stable isotope-labeled peptides were synthe-
sized to mimic the deglycosylated form of candidate glyco-
peptides as internal references (161). It is known that the
deglycosylation step using PNGase F results in a conversion
of asparagine to aspartic acid in the peptide sequence, intro-
ducing a mass difference of 0.9840 Da. This phenomenon
was utilized to design a synthetic peptide to mimic the en-
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dogenous N-linked glycopeptide in its deglycosylation form
with exact amino acid sequence of its endogenous counter-
part and with 13C and 15N labeling on one of its amino acids
(161). Therefore, each matched pair of reference and endog-
enous candidate glycopeptides should share the same chro-
matographic and mass spectrometric characteristics, and can
only be distinguished by their mass difference and isotopic
pattern because of isotopic labeling. This design conceptually
ensures that the synthetic internal standard of a candidate
glycopeptide will be detected simultaneously with its endog-
enous form under the same analytical conditions, thus, mini-
mizing the systematic variation and providing reliable quanti-
fication (214). The strategy for targeted glycoproteomics
analysis is schematically illustrated in Fig. 2.

The targeted glycoproteomics technique was first demon-
strated to analyze N-glycopeptides that were extracted from
human serum using an integrated pipeline combining a hy-
drazide chemistry-based solid phase extraction method and a
data-driven liquid chromatography MALDI TOF/TOF mass
spectrometric analysis to quantify 21 N-glycopeptides in hu-
man serum (161). A similar mass spectrometric platform was
then applied in a different study to assess a subset of glyco-
protein biomarker candidates in the sera from prostate cancer
patients (215). The targeted glycoproteomics analysis has
also been demonstrated using a triple Q/linear ion trap instru-
ment with the selected reaction monitoring (also referred to as
multiple reaction monitoring) technique for highly sensitive
targeted detection of N-glycoproteins in plasma (159). The
technique was applied to detect tissue inhibitor of metallo-
proteinase 1 (TIMP1), an aberrant glycoprotein associated
with colorectal cancer, in the sera of colorectal cancer pa-
tients (216) using a tandem enrichment strategy, combing
lectin glycoprotein enrichment followed by the method of
stable isotope standards and capture by antipeptide antibod-

ies (SISCAPA), to enhance the detection of tissue inhibitor of
metalloproteinase 1 (216). These studies demonstrate an in-
tegrated pipeline for candidate-based glycoproteomics anal-
ysis with precise mapping of targeted N-linked motifs and
absolute quantification of the glycoprotein targets in a com-
plex biological sample. Such targeted glycoproteomics can
reach a detection sensitivity at the nanogram per milliliter level
for serum and plasma detection (159, 214–216).

Concluding Remarks—The major challenge for a compre-
hensive glycoproteomics analysis arises not only from the
enormous complexity and nonlinear dynamic range in protein
constituent in a clinical sample, but also the profound biolog-
ical intricacy within the molecule of a glycoprotein, involving
the flexibility in glycan structures and the complex linkage
with the corresponding protein. In the past decade, significant
efforts have been made to structurally or quantitatively char-
acterize the glycoproteome of a variety of biological samples,
and to investigate the significant glycoproteins in a wide as-
sortment of diseases. Shotgun proteomics-based techniques
are still the most effective and versatile approach in glyco-
proteomics analysis, allowing high throughput and detailed
analysis on individual glycosylation sites. Although glycopro-
teomics is quickly emerging as an important technique for
clinical proteomics study and biomarker discovery, a compre-
hensive, quantitative glycoproteomics analysis in a complex
biological sample still remains challenging. It is anticipated
that with the continued evolution in mass spectrometry, sep-
aration technology, and bioinformatics many of the technical
limitations associated with current glycoproteomics may be
transient. There is no doubt that glycoproteomics is playing an
increasingly important role in biomarker discovery and clinical
study.
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